

Mycotoxins

HR.

July 2019

Mycotoxins Definition:

Mycotoxins are secondary metabolic products (metabolites) of moulds which are present in almost all agricultural commodities.

About Mycotoxins

- Currently there are around 400 mycotoxins reported.
- They occur under natural conditions in feed as well as in food.
- Mycotoxins are produced by different strains of fungi and each fungi strain can produce more than one mycotoxin.
- Each plant can be affected by more than one fungus and each fungus can produce more than one mycotoxin thus there is a high probability many mycotoxin are present in one feed ingredient hence increasing chances of occurrence of synergistic effects which are of great concern in livestock health and productivity.

Characteristics Of Mycotoxins

- Tasteless
- Chemically stable
- Resistant to temperature and storage
- Resistant to normal feed manufacturing processes.

Classification Of Mycotoxins

Field Fungi (Fusarium) – Pre Harvest

Typically produce mycotoxins in the field.

Storage – Post Harvest
Aspergillus and penicilliumsp.

NB: Under unusually hot or dry conditions, Aspergillus and peniallium sp can affect crops during growing season. Fusarium Sp (field fungus) can continue growing during storage and transport.

Genera Producing Fungi

Aspergillus

Clavice<u>ps</u>

Species	Mycotoxins
A. Flavus A. Parasiticus A. Nomius A. pseudotamarii	Aflatoxin (B ₁ , B ₂ , G ₁ , G ₂)
A. ochraceus	Ochratoxin (Ochratoxin A)
A. Clavatus A. terreus	Patulin
A. Flavus A. versicolor	Cyclopiazonic acid (CPA)
C. Purpurea C. Fusiformis C. Paspali C. africana	Penitrem A Ergot alkaloids: Clavines (Argroclavine), Lysergic acids, Lysergic acid amides (Ergine), Ergopeptines (Ergotamine, Ergovaline)

Genera Producing Fungi	Species	Mycotoxins
	F. verticillioides (Syn. F. moniliforme) F. proliferatum	Fumonisin (B ₁ , B ₂ , B ₃) Fusaric acid Acid
	F. graminearum F. avenaceum F. culmorum	Type A Trichothecenes: T-2 toxin, HT-2 toxin, diacetoxyscirpenol
Fusarium	F. poae F. equiseti F. crookwellense F. acuminatum F. sambucinum F. sporotrichioides	Type B Trichothecenes: Nivalenol, Deoxynivalenol, Fusarenon-X
	F. graminearum F. culmorum F. sporotrichioides	Zearalenone

Genera Producing Fungi

Penicillum

Species	Mycotoxins
P. verrucosum P. viridicatum	Ochratoxin (Ochratoxin A)
P. citrinum P. verrucosum	Citrinin
P. roqueforti	Roquefortine C PR toxin Penitrem A
P. cyclopium P. camemberti	Cyclopiazonic acid (CPA) Penitrem A
P. expansum P. claviforme P. roquefortii	Patulin

Genera Producing Fungi	Species	Mycotoxins
Weight Neotyphodium	N. coenophialum	Tall fescue toxins: Ergot alkaloids, Lolines, Peramine
	N. Iolii	Ryegrass toxins: Lolitrems, Peramine, Ergot alkaloids (e.g. Ergovaline)
	P. chartarum	
Pithomyces		

Masked Mycotoxins

e.g

- There are a product of specific biochemical reactions where mycotoxins can be bound to certain molecules including glycosides, glucuronides, fatty acid esters and proteins.
- These bonds can be cleared in the GIT and the mycotoxin released.

Dr. Nicholas Ndambuk

Masked Mycotoxins Process

Scheme of mycotoxin conjugate formation in plants and mycotoxin release in the mammalian digestive tract.

Distribution Of Mycotoxins

Distribution Of Mycotoxins

Afla	11%
ZEN	37%
DON	68%
T-2	2%
FUM	63%
ΟΤΑ	16%

Dr. Nicholas Ndambuki

Mechanisms Of Action

Primary toxic effects of mycotoxins are summarized in the table below:

Mycotoxin	Primary mechanism of action
Aflatoxin	Binds to guanine (DNA-adduct) after metabolic activation in the liver
Trichothecenes	Inhibition of protein synthesis
Zearalenone	Binds to mammalian estrogen receptor
Ochratoxins	Blocks protein synthesis
Ergot alkaloids	Binding to adrenergic, dopaminergic and serotonin receptors
Fumonisins	Inhibit ceramide synthase (sphingolipid biosynthesis)

Continuation.....

- Mycotoxins can either have:
- Direct target toxicity i.e towards certain organs like liver, Kidney, skin cardio, reproductive or immune systems or;
- \geq Non direct target effects which includes: carcinogenicity, teratogenicity and mutagenesis.
- Mycotoxins are absorbed through GIT, lungs (ochratoxima), skin or eyes.

(GIT involves: Mouth, Oesophagus, stomach, small intestines (maximal absoption) and colon (Small fraction.)

- Transportation/distribution of mycotoxins takes place through the plasma (Ochratoxima).
- Lipophilic can penetrate blood brain barrier and placenta.

Excretion

- Urine Ochratoxins
 - Bile
 - Milk (Aflatoxin B1)
 - Faeces (Unabsorbed Mycotoxins)

Aflatoxin

Symptoms:

- ✓ Vomiting
- ✓ Necrosis
- ✓ Anorexia
- ✓ Fatty liver
- ✓ Liver cancer
- ✓ Diarrhea

Effects on the Reproductive System:

- Delayed testicular development and morphological changes
- ✓ Decline in the percentage of live sperm and reduced plasma concentration of testosterone

Immunosuppressive Effects

 Marked decreased resistance to secondary infections by fungi, bacteria and parasites.

> Other Aflatoxin related Symptoms

- Encephalopathy with fatty degeneration of viscera
- ✓ Pulmonary interstitial fibrosis

Dr. Nicholas Ndambuk[.]

Deoxynivalenol

DON Effects

- Immunosuppression and immunomodulation (Increased susceptibility to opportunistic and general pathogens)
- ✓ Cytotoxic effects

Effects on the gastrointestinal tract

- ✓ Gastroenteritis (Swelling of stomach and intestine)
- Impairment of gut integrity and impact on intestinal microflora
- ✓ Diarrhea
- \checkmark Intestinal bleeding
- ✓ Anorexia
- ✓ Decreased nutritional efficiency
- $\checkmark\,$ Increased liver size
- \checkmark Severe immunosuppression
- $\checkmark\,$ Decrease in feed intake and reduced weight gain

Other Effects

- ✓ General weakness
- ✓ Destruction of bone marrow
- ✓ Decline in serum proteins and albumin levels
- ✓ Decrease in hematocrit (red blood cells concentration in blood)
- $\checkmark\,$ Reduction of serum calcium and phosphorus
- ✓ Neurotoxic effects

Fumonisins

FUMS are:

- ✓Hepatotoxic
- ✓Nephrotoxic
- ✓ Immunosuppressive

Effects of FUMS

- Alteration of the intestinal barrier function
- ✓ Undergo synergistic effects with other mycotoxins like DON, contributing to the disruption of the intestinal barrier and favoring the translocation of other toxic entities and pathogens

Other Effects

- ✓ Cardiotoxicity
- ✓ Decreased feed consumption
- ✓ Dyspnea
- ✓ Weakness
- ✓ Cyanosis
- ✓ neural tube defects (NTDs)

Known Animal Diseases Caused By FUMS

- ✓ The Porcine Pulmonary Edema (PPE)
- \checkmark The Equine Leukoencephalomalacia (ELEM)

Dr. Nicholas Ndambuk[.]

Zearalenone

Estrogenic effects of ZEN differ from males and females

Effects Of ZEN On Males

- ✓ Immunosuppression
- ✓ Reduction in testosterone level
- \checkmark Lower testes weight
- ✓ Reduced spermatogenesis
- \checkmark Feminization
- \checkmark Reduction of libido

Effects Of ZEN On Females

- ✓ Immunosuppression
- ✓ Reduced survival of embryos
- \checkmark Reduced fetal weight
- ✓ Vulvar dilatation and redness
- ✓ Vulvovaginitis
- \checkmark Retention or absence of milk
- ✓ Rectal prolapse

Other Effects Of ZEN

- ✓ Inducing Cancer
- ✓ Genotoxic effects
- \checkmark endocrine effects

Ochratoxin A

Nephrotoxic (Kidney) Effects Of OTA

- Degeneration of the convoluted tubule of nephron
- \checkmark Renal interstitial fibrosis
- ✓ Decrease in thickness of basal membrane and glomerular hyalinization
- ✓ Anemia
- \checkmark Proteinuria
- ✓ Uraemia

OTA Displays

- ✓ Teratogenic
- ✓ Genotoxic
- Carcinogenic effects (i.e. multifocal hemorrhages in several organs, fibrin thrombi in spleen, brain, liver, kidney and heart)

OTA Is

A potent immunosuppressor and immunomodulatory, giving rise to effects like the size reduction of thymus, spleen and lymph nodes, depression of antibody response, changes in immune cells number and function.

Adverse Effects of Mycotoxin in Poultry

Adverse Effects of Mycotoxin in Pigs

ZON, T-2, DON, Ergots

- Irregular heats
- Abortion
- Pseudo pregnancy
- Low conception rates
- Ovarian cysts
- Embryonic Loss
- Tail necrosis
- Nymphomania
- · Hypertrophy of the uterus
- Shrunken udder/Agalactia
- Stillbirths

T-2, DON, AFB₁, OTA, FUM, Endotoxins

- Intestinal hemorrhages
- · Damage of the kidneys
- Pale and fatty liver
- Porcine pulmonary edema (PPE)
- Increased water consumption
- . Fever

DON – Deoxynivalenol ZEN – Zearalenone AFB₁ – Aflatoxin B₁ T-2 – T-2 Toxin FUM – Fumonisins OTA – Ochratoxin A Ergots – Ergot Alkaloids Endotoxins

T-2, DON, Ergots

- · Decreased feed intake
- · Dermal and oral lesions
- Feed refusal
- Vomiting
- · Impaired growth

AFB,, T-2, OTA

- Diarrhea
- Blood in faeces and urine
- Inflammation of bladder and kidneys

T-2, DON, AFB,, OTA, FUM

- Decreased performance
- Immunosuppression
- Pancreatic necroses

T-2, Ergots

- Dermal and oral lesions
- Vasoconstriction (necrosis)

Dr. Nichol<u>as Ndambuki</u>

Adverse Effects of Mycotoxin in Cows

Dr. Nicholas Ndambuki

Adverse Effects of Mycotoxin in Fish

- Liver necrosis
- Pale, swollen kidneys

- Histopathological lesions
- · Lesions in the exocrine and endocrine pancreas
- Lesions in inter-renal tissue

Dr. Nicholas Ndambuki

Mycotoxins Management

The existence of hundreds of mycotoxins with different frequencies and patterns of occurrence, coupled with synergistic complications calls for creature and targeted solutions in mycotoxin counteracting strategies.

- **Pre-harvest:** Good land management practices e.g proper tillage
- Post-harvest:
 - Good transport and handling
 - Proper storage
 - Mould inhibitors

Mycotoxins Management In Animal Feed Processing/Manufacturing

Various mycotoxins require different approaches to manage them since not all mycotoxins can be bound.

Main Methods / Modes / Approaches Include:

1) Biotransformation

It involves specific enzymes and biological components to convert mycotoxins into non – toxic environmentally safe metabolites like:

> Funzyme: Fumonisins to irreversibly non toxic metabolites

BBSH: Tricothecenes to harmless metabolites

MTV: Zearelenone and Ochratoxin A

2) Adsorption / Binding

Mainly mineral absoebents, eybentomite, sepdolite.

NB: Should be selective

Binds polar mycotoxins like aflatoxins and ergot alkaloids

Dr. Nicholas Ndambuki

🖾 nicndambuki2@gmail.com